Installation, commissioning and operating instructions

for valve-regulated stationary lead-acid batteries
Preface

Valued customer,

Thank you for choosing a HOPPECKE product.

Please read this documentation carefully and completely before performing any tasks using the lead-acid batteries. This documentation contains important information regarding safe and correct unpacking, storage, installation commissioning, operation and maintenance of lead-acid batteries. Non-compliance with these safety instructions can lead to severe personal injury and material damage. HOPPECKE is not responsible or liable for direct or indirect injury or damage resulting from improper use of this product; all warranty claims become null and void.

HOPPECKE reserves the right to make changes to the contents of this documentation. HOPPECKE Batterien GmbH & Co. KG is not responsible for errors in this documentation. HOPPECKE Batterien GmbH & Co. KG is not responsible for direct damage related to the use of this documentation.

Our products are undergoing constant development. For this reason, there may be discrepancies between the product that you have purchased and the product as represented in this documentation. Please keep this documentation so that it is immediately available for all personnel who must perform work in connection with the batteries.

If you have questions, we would be happy to help you: You can reach us via email:
info@hoppecke.com
or by phone on working days between the hours of 8 am and 4 pm (CET) at the following number:
Telephone +49(0)2963 61-0
Fax +49(0)2963 61-481.

Your Team from
HOPPECKE Batterien GmbH & Co. KG

Postal address:
HOPPECKE Batterien GmbH & Co. KG
P.O. Box 11 40
D-59914 Brilon
Germany

Head office address:
HOPPECKE Batterien GmbH & Co. KG
Bonkircherer Straße 1
D-59929 Brilon-Hoppecke
Telephone +49(0)2963 61-0
Fax +49(0)2963 61-449
Internet www.hoppecke.com
Email info@hoppecke.com
Used Symbols

The following safety notes need to be observed. Listed symbols are used multiple times for safety relevant information:

Danger!
- Personal health, batteries or the environment are at risk.
- Failure to observe this hazard notice can lead to severe or fatal injury.

Attention!
- Batteries, materials or the environment are at risk. Personal safety is not at risk.
- Failure to observe this notice can lead to malfunction or damage to the batteries. In addition, material and environmental damage may occur.

Risk of explosion or blast, splashing of hot or molten substances.
- Risk of explosion and fire, avoid short circuits.
- Avoid electrostatic charges and discharges/sparks.
- Failure to observe this hazard notice can lead to severe or fatal injury.

Risk of corrosion caused by leaking electrolyte.
- Electrolyte is highly corrosive.

Electrical voltages hazardous to health may cause fatal injury.
- Metal parts of the battery are always alive, therefore do not place items or tools on the battery.
- Failure to observe this hazard notice can lead to severe or fatal injury.

Warning! Risks caused by batteries.
- Do not smoke!
- Do not use any naked flame or other sources of ignition.
- Risk of explosion and fire!

General prohibition
- Observe these instructions and keep them located near the battery for future reference.
- Work on batteries only by trained qualified personnel.

General order
- While working on batteries wear protective eye-glasses, protective gloves and clothing!
- Observe accident prevention regulations as well as EN 50110-1 and IEC 62485-2 (Stationary batteries) or IEC 62485-3 (Traction batteries).
- Wear conductive shoes.

Recycling
- Spent batteries have to be collected and recycled separately from normal household wastes.

General notice or tip for better understanding and optimum use of the battery or batteries.

0 Safety notices
0.1 General Information
- Incorrect use of the products described here can lead to personal and material damage. HOPPECKE is not responsible or liable for direct or indirect personal and material damages which occur as a result of handling the products described here.

- Risk of explosion and fire, avoid short circuits. Avoid electrostatic charges and discharges/sparks.
- Attention! Metal parts of the battery or batteries are always live, so never place foreign objects or tools on top of the batteries.
- Electrostatic discharges can ignite oxyhydrogen gas and therefore cause an explosion of the battery! Exploding parts can lead to heavy injuries.

- Electrolyte is highly corrosive.
- Contact with electrolyte is impossible in normal working conditions. Electrolyte coming out of damaged cells or blocks is highly corrosive too. Acid splashes in the eyes or on the skin must be washed with plenty of clean water. Then consult a doctor immediately!
- Clothing contaminated by acid should be washed in water.
- Leaking electrolyte is harmful to the eyes and skin. Refer also to chap. 2.3, Safety precautions!

- Incomplete or insufficient maintenance can lead to unexpected battery failure or reduction of battery power. Maintenance work must be completed once every six months by HOPPECKE specialists or by qualified personnel trained by HOPPECKE in accordance with the instructions in this documentation.

- Work on batteries, especially installation and maintenance should be performed by trained HOPPECKE specialists (or by qualified personnel trained by HOPPECKE) only; personnel must be familiar with battery handling and the required precautionary measures. Unauthorized persons must keep away from the batteries!

- Without proper and regular maintenance of the batteries by HOPPECKE specialists (or personnel authorized by HOPPECKE), the safety and reliability of the power supply during operation cannot be ensured.

- Sealed lead-acid batteries are always filled before delivery. Sealed stationary lead-acid battery cells must not be refilled with water during the entire battery service life. Overpressure valves are used as sealing plugs. These plugs cannot be opened without damaging.
HOPPECKE offers the following type ranges as valve regulated lead-acid (VRLA) batteries:

- net.power
- OPzV
- power.bloc OPzV
- power.com HC
- power.com XC
- grid | power VR M (power.com SB)
- grid | power VR X (grid)
- grid | power VR X FT
- sun | power VR L (OPzV solar.power/OPzV bloc solar.power)
- sun | power VR M (solar.bloc)

The product names used for HOPPECKE battery series have been changed. In the overview below you will find the respective counterparts of old and new names. In the rest of this document old names will be listed in brackets.

<table>
<thead>
<tr>
<th>Old</th>
<th>new</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPzV bloc solar.power</td>
<td>sun</td>
</tr>
<tr>
<td>OPzV solar.power</td>
<td>sun</td>
</tr>
<tr>
<td>power.com SB</td>
<td>grid</td>
</tr>
<tr>
<td>solar.bloc</td>
<td>sun</td>
</tr>
</tbody>
</table>

Following symbols and pictograms are pictured on each battery cell or on each battery block:

- Read the instruction for installation, commissioning and operation carefully.
- Always wear protective goggles and cloths.
- Avoid naked flames and sparks.
- General danger warning.
- Risk of electrical voltage.
- Risk of chemical burns through electrolyte.
- Risk of explosion, avoid short circuits, electrostatic charge and discharge/sparks.
- Battery with low concentration of antimony.
- Used batteries with this symbol have to be recycled.
- Used batteries which are not sent for recycling are to be disposed of as special waste under all relevant regulations.
0.2 Safety instructions for working with lead-acid batteries

When working on batteries, always observe the safety regulations documented in DIN EN 50110-1 (VDE 0105-1) Operation of electrical installations:

- Always proceed in the correct order when installing and removing the battery and when connecting it to the charger.
- Pay attention to the polarity!
- Make sure the connections are tight.
- Use only battery charger leads that are in perfect technical condition and that have adequate cross-sections.
- Batteries must not be connected or disconnected while current is flowing or while the charger is switched on.
- Before opening the load circuit, make sure that the charger is in a switched-off state by measuring the voltage.
- Secure the charger to prevent it from being switched back on again!
- Heed the instructions given in the operating manual provided by the manufacturer of the battery charger.

Under certain conditions, there is a risk caused by electrical battery voltage and in the event of a short circuit, extremely high short circuit currents may flow. There is a risk of explosion and fire due to explosive gas.

Observe the following regulations (IEEE standards valid for USA only):

- ZVEI publication „Instructions for the safe handling of electrolyte for lead-acid accumulators.“
- VDE 0510 Part 2: 2001-12, in accordance with IEC 62485-2: “Safety requirements for secondary batteries and battery installations - Part 2: Stationary batteries”.
- DIN EN 50110-1 (VDE 0105-1): “Company of electrical instructions”; German copy EN 50110-1:2004

Batteries contain corrosive acids which can lead to chemical burn on skin and eyes if the battery is damaged.

You must wear safety goggles while handling the battery!
Wear all the intended personal safety clothing while handling the batteries.

1. When renewing old batteries, ensure that all electrical loads are switched off before removing the old battery (separators, fuses, switches). This must be carried out by qualified personnel.

2. Remove all wrist watches, rings, chains, jewelry and other metal objects before working with batteries.

3. Use insulated tools only.

4. Wear insulating gloves and protective shoes (refer to also to Chap. 2.2).

5. Never place tools or metal components on top of the batteries.

6. Make sure that the battery or batteries are not mistakenly grounded. If the system is grounded, terminate the connection.

7. Before establishing connections, make sure to check the correct polarity - better one too many times than one too few.

8. Filled lead-acid batteries contain highly explosive gas (hydrogen/air mixture). Never smoke, handle open flames or create sparks near the batteries. Always avoid electrostatic discharge; wear cotton clothing and ground yourself if necessary.

9. Blocks/cells are very heavy. Make sure they are installed securely. Only use suitable means of transport. Do not lift or pull up blocks/cells on the poles.

10. Never carry batteries by the battery terminals.

11. These batteries contain lead and cannot under any circumstances be disposed of with household waste or at a waste dump at the end of their service life (for more information, refer to Chap. 1.4).

12. Contains lead-metall (CAS- Nr. 7439-92-1). This metall is one of the reach list chemicals.
Table of contents

Preface ... 3
Symbols ... 4

0 Safety notices .. 5
 0.1 General Information .. 5
 0.2 Safety instructions for working with lead-acid batteries ... 8

1 General Information .. 12
 1.1 Safety precautions .. 12
 1.2 Technical Data ... 12
 1.2.1 Example for single cell ... 12
 1.2.2 Identification plate battery ... 13
 1.3 CE-Mark ... 13
 1.4 Disposal and recycling ... 13
 1.5 Service .. 13

2 Safety .. 14
 2.1 General ... 14
 2.2 Personal safety equipment, protective clothing, equipment ... 14
 2.3 Safety precautions ... 14
 2.3.1 Sulfuric acid ... 14
 2.3.2 Explosive gases .. 15
 2.3.3 Electrostatic discharge ... 16
 2.3.4 Electric shock and burns .. 17

3 Transport .. 18
 3.1 General ... 18
 3.2 Delivery completeness and externally visible damage .. 18
 3.3 Latent defects .. 19

4 Storing batteries before installation .. 20
 4.1 General ... 20
 4.2 Storage time ... 20
 4.3 Preparing for a several-month storage period .. 20

5 Installation ... 21
 5.1 Demands on the erection site .. 21
 5.1.1 Calculation of safety distance ... 23
 5.2 Filling the cells .. 24
 5.2.1 Check ... 24
 5.2.2 Ventilation - calculation for ventilation requirements of battery rooms 24
 5.3 Conducting an open-circuit voltage measurement .. 26
 5.4 Installation tools and equipment .. 26
 5.5 Rack Installation ... 27
 5.6 Cabinet Installation .. 28
 5.7 Handling the batteries ... 29
 5.8 General information on connecting the batteries ... 29
 5.9 Putting the cells/blocks into the racks .. 30
 5.10 Connecting the batteries ... 32
 5.10.1 Connection terminals ... 32
 5.10.2 Type of connection cable ... 32
 5.10.3 Clamping batteries using battery connectors .. 32
 5.10.4 Installing the screwed connectors ... 33
 5.10.5 Clamping connection plates onto the batteries .. 33
 5.11 Connect the battery system to the DC power supply .. 34
 5.12 Commissioning charge (initial charge) .. 35
 5.12.1 Commissioning charge with constant voltage (IU characteristic curve) 35
 5.12.2 Extended commissioning charge .. 35

6 Battery operation ... 36
 6.1 Unloading ... 36
 6.2 Charging - general ... 36
 6.2.1 Standby parallel operation ... 38
 6.2.2 Floating operation ... 39
 6.2.3 Switch mode operation (charge/discharge operation) .. 39
 6.2.4 Float charging ... 39
 6.2.5 Equalizing charge (correction charge) .. 40

7 Charging of HOPEPECE sun | power system battery in Solar Applications 42
 7.1 Charge and discharge parameters ... 42
 7.2 Alternating currents .. 43
 7.3 Temperature influence on battery performance and lifetime 43
 7.3.1 Temperature influence on battery capacity .. 44
 7.3.2 Temperature influence on battery service life ... 44
 7.4 Influence of cycling on battery behaviour ... 44
 7.4.1 Endurance in cycles depending on depth of discharge 45
 7.4.2 Endurance in cycles depending on ambient temperature 45
 7.4.3 Electrolyte freezing point depending on depth of discharge (DoD) 46
 7.5 Remarks to warranty management ... 47

8 Battery maintenance ... 47
 8.1 Work to be performed every six months .. 48
 8.1.1 Charging .. 48
 8.1.2 Work to be performed annually .. 48
 8.3 Cleaning of battery ... 48

9 Testing the battery system .. 49
 9.1 Performing the capacity test (short form) .. 49
 9.2 Performing the capacity test (extended version) .. 49
 9.3 Capacity test of the battery ... 51

10 Fault Rectification ... 53

11 Required ventilation for hydrogen generated by batteries ... 53

12 Disassembly .. 54

Inspection protocol .. 55

Safety data sheet ... 56
1 General information

The electrolyte of sealed lead-acid batteries is fixed in a glass fiber fleece (AGM) or gel. Therefore an upright or horizontal installation of battery cells or blocks is basically possible. The generation of oxyhydrogen gas is extremely reduced by an internal recombination circle. Sealed lead-acid battery cells or battery blocks are not sealed gas tightly. The integrated valve has to open by pressure overload. Sealed lead-acid batteries must not be opened. HOPPECKE offers numerous sealed lead-acid batteries as single cells (nominal voltage 2 V) or blocks (nominal tension: 5 V or 12 V) for different applications.

1.1 Safety precautions

Read this documentation carefully and completely before performing any tasks using the batteries. This documentation contains important information regarding the safe and correct unpacking, storage, installation commissioning, operation and maintenance of filled lead-acid batteries.

To ensure your own safety as well as the safety of your colleagues and the system, it is essential that you have read and understood all instructions in this documentation and adhere to them strictly. If you have not understood the information contained in this documentation or if local regulations and conditions apply which are not covered by the documentation (or run contrary to the information in this documentation), please contact your local HOPPECKE representative. You can also contact us at our head office directly.

If you are conducting any work on or with the battery system, it is essential that you familiarize yourself with the installation, operation and maintenance of lead-acid batteries.

1.2 Technical data

1.2.1 Example for single cell

Each single cell/each battery block has an own identification plate on the top side of the cell/block cap. Refer to the example below.

Example: The information on the identification plate is as follows: 5 OPzV 250

- 2V 250Ah C10, 267 Ah C10
- Ufloat = 2,25 V/cell
- ! upright position only!
- Made in Germany

<table>
<thead>
<tr>
<th>5 OPzV 250</th>
</tr>
</thead>
<tbody>
<tr>
<td>2V 250Ah C10</td>
</tr>
<tr>
<td>Ufloat =</td>
</tr>
</tbody>
</table>

1.2.2 Identification plate battery

The identification plate of the entire battery system can be found on the battery rack or inside the battery cabinet. The nominal voltage, the number of cells/blocks, the nominal capacity (CN = CA) and the battery type are listed on the identification plate of the system.

![Fig. 1–1: Example for type plate on battery rack](image)

1.3 CE-Mark

Effective as of 1 January 1997, the EC declaration of conformity 2006/95/EC (Low Voltage Directive) and the corresponding CE marking for the battery system are required for batteries with a nominal voltage between 75 V and 1500 V DC.

The installer of the battery system is responsible for displaying the declaration and affixing the CE label on or next to the battery’s identification plate.

1.4 Disposal and recycling

Attention!

Used batteries with this marking are recyclable goods and must be sent for recycling.

Used batteries which are not sent for recycling are to be disposed of as special waste under all relevant regulations.

We offer our customers our own battery return system. All lead acid batteries are taken to the secondary lead smelting plant at our HOPPECKE site, observing the provisions of the German:
- recycling and waste law
- battery regulations
- transport approval regulations
- together with the general principles of environmental protection and our own corporate guidelines.

The HOPPECKE smelting plant is the only lead smelter in Europe certified under
- DIN EN ISO 9001 (processes and procedures),
- DIN EN ISO 14001 (environmental audit),
- and specialist disposal regulations covering specialist disposal with all associated waste codes for storage, treatment and recycling.

For further information: +49(0)2963 61-280.

1.5 Service

HOPPECKE has a worldwide service network that you should take advantage of. HOPPECKE service is there for you whenever you need specialist consultation for installation of the battery system, parts and accessories or system maintenance. Contact us or your local HOPPECKE representative.

HOPPECKE service:
Email: service@hoppecke.com

Refer to the HOPPECKE website for contact data of all international HOPPECKE branches:
Internet: www.hoppecke.com
2 Safety

2.1 General

If the casing of a sealed lead-acid battery is damaged, small quantities of electrolyte, acid mist or hydrogen gas may leak out. Always take the normal safety precautions when working with lead-acid batteries.

Consider all instructions and engineer standards, as mentioned in chapter 0.2.

2.2 Personal safety equipment, protective clothing, equipment

While working on batteries wear protective eye-glasses, protective gloves and clothing!

Observe accident prevention regulations as well as EN 50110-1 and IEC 62485-2 (Stationary batteries) or IEC 62485-3 (Traction batteries).

If working with lead-acid batteries, the following equipment must be provided at the very least:

– Insulated tools
– Protective shoes
– Rubber gloves
– Fire extinguisher
– Rubber apron
– Protective goggles
– Face shield
– Face mask
– Emergency eye wash (recommended).

To avoid electrostatic charging, all textiles, protective shoes and gloves worn while working with batteries must have a surface resistance of <10^8 ohm and an insulation resistance of ≥10^5 ohm (refer IEC 62485-2 and DIN EN ISO 20345:2011 Personal protective equipment - Safety footwear).

If possible wear ESD shoes.

Danger!

Remove all wrist watches, rings, chains, jewelry and other metal objects before working with batteries.

Never smoke, handle open flames or create sparks near the batteries.

Never place tools or metal components on top of the batteries.

The use of proper tools and safety equipment can help to prevent injury or reduce the severity of injury in case of an accident.

2.3 Safety precautions

2.3.1 Sulfuric acid

Sealed lead-acid batteries are safe when used properly. However, they contain diluted sulfuric acid (H₂SO₄) that is bonded in gel or glass mat. The bonded sulfuric acid is extremely corrosive and can cause serious injury. Further information to sulfuric acid can be found in the attached material safety data sheet.

Note also the information in the attached ZVEI leaflet “Instructions for the safe handling of lead-acid accumulators (lead-acid batteries)”.

2.3.2 Explosive gases

Lead-acid batteries can release an explosive mixture of hydrogen and oxygen gases. Severe personal injury could occur in the event of an explosion of this mixture.

– Always wear the recommended protective clothing (protective goggles, insulated gloves and protective shoes, etc.)
– Use the correct tools only (‘non-sparking’ with insulated grips, etc.).
– Eliminate all potential sources of ignition such as sparks, flames, arcs.
– Prevent electrostatic discharge. Wear cotton clothing and ground yourself when you are working with the batteries directly.

In case of fire, extinguish using water or CO₂ extinguisher only.

Do not point the fire extinguisher directly at the battery or batteries to be extinguished. There is a risk that the battery casing may break as a result of thermal tension. In addition, there is a risk of static charging on the surface of the battery. This could result in an explosion. Switch off the charging voltage of the battery. If extinguishing a fire, use a breathing apparatus with a self contained air supply. If using water to extinguish a fire, there is a risk that the water/foam could react with the electrolyte and result in violent spatter. For this reason, wear acid-resistant protective clothing. Burning plastic material may produce toxic fumes. If this should occur, leave the location as quickly as possible if you are not wearing the breathing apparatus described above.

If using CO₂ fire extinguishers, there is a risk that the battery could explode as a result of static charging.

Note also the information in the attached ZVEI leaflet “Instructions for the safe handling of lead-acid accumulators (lead-acid batteries)”.
2.3.4 Electric shock and burns

Danger!

Batteries can cause severe electric shock. If there is a short circuit, very strong currents may be present. Do not touch any bare battery components, connectors, clamps or terminals. In battery systems with a nominal voltage of over 1,500 V DC, you must provide equipment for splitting the batteries into cell groups with voltages lower than 1,500 V DC. In order to prevent serious injury as a result of electric shock or burns, be very cautious when performing any work on the battery system.

Always wear the recommended protective clothing (insulated rubber gloves and rubber shoes, etc.) and always use insulated tools or tools made of non-conductive material. Remove all wrist watches, rings, chains, jewelry and other metal objects before working with batteries.

Before conducting work on the battery system...

Determine whether the battery system is grounded. We do not recommend this. If the system is grounded, terminate the connection.

Touching a grounded battery by mistake can result in severe electric shock. This risk can be significantly reduced by removing the ground connection. However, the racks (or cabinets) used to hold the batteries do need to be well grounded or completely insulated.

If a battery system is grounded...

There is a voltage between the ground and the ungrounded terminal. If a grounded person touches this terminal, there is risk of fatal injury. There is also a risk of short circuit if dirt or acid on the ungrounded terminal come in contact with the battery rack.

If an additional ground connection is made by some cells within the (grounded) battery system, there is a risk of short circuit, fire and explosion.

If a battery system is not grounded...

If an accidental ground connection is made by some cells within the battery system, voltage is created between the ground and the ungrounded terminal. The voltage can be dangerously high - risk of fatal injury due to electric shock.

If a second accidental ground connection is made, there is a risk of short circuit, fire and explosion.

If you have questions about these instructions or any other questions regarding safety when working with a battery system, please contact your local HOPPECKE representative. You can also contact us at our head office directly.
3 Transportation damages

3.1 General
We take great care in packaging the batteries that we send to you so that they arrive without damage. We strongly recommend that you inspect the delivery for possible shipping damage as soon as it arrives.

For road transportation, filled lead-acid rechargeable batteries are not treated as dangerous goods if
- They are undamaged and sealed
- They are protected from falling, shifting and short circuit
- They are firmly secured to a pallet
- There are no dangerous traces of acids, lye, etc. on the outside of the packaging

It is essential that loads on road vehicles are properly secured.

Danger!
Monobloc batteries/battery cells are very heavy (depending on type between ca. 10kg and max. 240kg per cell/bloc). Wear protective shoes. Use only the appropriate transportation equipment for transport and installation.

3.2 Delivery completeness and externally visible damage
Check immediately upon delivery (while the carrier is still present) to make sure that your shipment is complete (compare with the delivery note). In particular, check the number of battery pallets and the number of boxes with accessories. Then inspect the goods for possible shipping damage.

Note all
- damages to the outer packaging
- visible stains or moisture that might indicate electrolyte leakage

If the delivery is incomplete or damaged as a result of shipping
- Write a short defect notice on the delivery note before signing it.
- Ask the carrier for an inspection and note the name of the inspector.
- Compose a defect report and send it to us and to the carrier within 14 days.

3.3 Defects
Observe all required safety measures to avoid electric shock. Keep in mind that you are handling live batteries. Observe all instructions in Chap. 2 “Safety”.

Unpack the goods as soon as possible upon delivery (the sooner, the better) and inspect them for any defects in case commissioning should be carried out promptly.

The sealed batteries are always filled before delivery.

Check the entire scope of delivery to make sure that it matches the detailed delivery note (or the packing list).

Failure to promptly inform the carrier of defects or incompleteness could result in the loss of your claims.

If you have questions regarding incomplete shipments or damage to the delivered products, please contact your local HOPPECKE representative. You can also contact us at our head office directly.
4 Storage

4.1 General

After receiving the batteries, you should unpack, install and charge them as soon as possible. If this is not possible, store the batteries fully-charged in a dry, clean, cool and frost-free location. Excessively high storage temperatures may result in accelerated self-discharge and premature aging. Do not expose the batteries to direct sunlight.

Do not stack the pallets with the batteries as this can cause damage which is not covered under the warranty.

Attention!

4.2 Storage time

If the cells/batteries are to be stored for a long period of time, store them fully-charged in a dry, frost-free location. Avoid direct sunlight. To prevent damage to the batteries, an equalizing charge must be performed after a maximum storage period of six months (see Chap. 6.2.5). Calculate this exact time starting on the day of delivery. By the end of the max. storage time charge acceptance might be declined during battery recharge. Hence, HOPPECKE recommends a suitable process of charging, which assures a gentle full charge of the battery (refer to Chap. 6.2.5). If storage temperatures exceed 20 °C, more frequently equalizing charges may be necessary (at temperatures around 40 °C monthly charges). Refer also to figure 4-1 to retrieve max. storage times for different storage temperatures. Failure to observe these conditions may result in sulfating of the electrode plates and significantly reduced capacity and service life of the battery. Battery recharge during storage time should be carried out max. twice. The battery should be operated in continuous float charge mode thereafter.

Battery service life commences with delivery of the battery or batteries from the HOPPECKE plant. Storage times have to be added completely to the service life.

Required process for charging the batteries by achievement of max. storage duration:
Charge with constant power of 1 A or 2 A per 100 Ah C₁₀, battery capacity. Interrupt charging when all cell voltages have risen to min 2.65 V/cell (refer also to Chap. 6.2).

4.3 Preparing for a several-month storage period

If the storage time extends over a period of several months, make sure to provide an appropriate charger so that the charging tasks can be performed promptly as previously described. For temporary storage, arrange the blocks/cells so that they can be temporarily connected in series for charging. The batteries should remain on their pallets until final installation.

To avoid having to perform the previously described work, we strongly recommend that you connect the battery or batteries to the regular charging voltage supply within six months. Failure to observe the recharging intervals will render the warranty null and void.

Attention!

Observe ventilation requirements (refer to Chap. 5.2.1.1) even for charging of temporarily connected cells.

Attention!

Fig. 4-1: Available Capacity vs. storage time

5 Installation

5.1 Demands on the erection site

When renewing old batteries, ensure that all electrical loads are switched off before removing the old battery (separator, fuses, switches). This must be carried out by qualified personnel.

If you have questions regarding battery system installation, please contact your local HOPPECKE representative. You can also contact us at our head office directly.

If choosing an installation location, determining space requirements and performing the installation, observe the relevant installation drawing if it is available.

The floor must be suitable for battery installation; it must:
– have a suitable load-carrying capacity,
– be sufficiently conductive,
– be at ground level (max. thickness of backing elements under racks and cabinets: 6 mm),
– be as free of vibration as possible (otherwise a special rack is required).

Within the EU, follow VDE 0510 Part 2: 2001-12, in accordance with IEC 62485-2: „Safety requirements for secondary batteries and battery installations - Part 2: Stationary batteries“.
5.1.1 Calculation of safety distance

In close proximity of the batteries the dilution of explosive gases is not always given. Therefore a safety distance has to be realized by a clearance, in which there must not be any sparking or glowing equipments (max. surface temperature 300°C). The diffusion of the oxyhydrogen depends on the gas release and the ventilation close to the battery. For the following calculation of the safety distance ‘d’ it can be assumed that the oxyhydrogen expands spherical. Figure 5.1 depicts a graphic approximation of the safety distance ‘d’ depending on the battery capacity. Subsequently a detailed calculation is shown.

Safety clearance:
Required safety clearance needs to be calculated according to formula stated in IEC 62485-2.

Volumes of a hemisphere:

\[V_{\text{gas}} = \frac{2}{3} \pi r^3 \]

Air volume flow required to reduce the concentration of generated hydrogen \(H_2 \) in the air to 4% max.:

\[Q_{\text{gas}} = 6.05 \times (n) \times V_{\text{gas}} \times C \times 10^{-7} \left[\frac{\text{m}^3}{\text{h}} \right] \]

\[Q_{\text{gas}} = \frac{V_{\text{gas}}}{4} \]

Required radius of the hemisphere:

\[a = \frac{28.8 \times (n) \times 1/3 V_{\text{gas}} ^ {1/3} C}{(\text{mm})} \]

![Fig. 5-1: Safety distance based on battery capacity (Source HOPPECKE)](image.png)
5.2 Filling the cells

Sealed lead-acid batteries are always filled before delivery. Sealed stationary lead-acid battery cells must not be refilled with water during the entire battery service life. Overpressure valves are used as sealing plugs. These plugs cannot be opened without damaging.

5.2.1 Check

Make sure that the installation and ventilation requirements according to IEC 62485-2 are met. Should commission charging be carried out using higher amperage than you established for the type of ventilation equipment, then you must increase the ventilation in the battery room (e.g., using additional portable fans) according to the amperage applied. Increased ventilation has to be applied during commissioning and for one hour afterwards. The same applies for occasional special battery charging processes.

5.2.1.1 Ventilation - preventing explosion

It is impossible to stop gases from being generated while charging batteries; therefore, the hydrogen concentration in the air must be reduced with sufficient ventilation. Do not use sparking equipment near batteries.

The following could act as sources of ignition for gas explosions:
- open flames
- flying sparks
- electrical, sparking equipment
- mechanical, sparking equipment
- electrostatic charge.

Observe the following measures to prevent gas explosions:
- sufficient natural or technical ventilation
- no heating using open flames or glowing objects (T > 300°C)
- separate battery compartments with individual ventilation
- anti-static clothing, shoes and gloves (according to applicable DIN and EN regulations)
- surface conductivity resistance: <10^8 Ω and insulating resistance ≥10^8 Ω
- hand-held lights with power cable without switch (protection class II)
- hand-held lights with battery (protection category IP54)
- warning and regulatory signs.

The ventilation requirements for battery rooms, cabinets or compartments are based on the required reduction of the concentration of hydrogen generated during charging and safety factors which include battery aging and the potential for fault ("worst case").

5.2.1.2 Ventilation - calculation for ventilation requirements of battery rooms

Air volume flow Q:

\[Q = \frac{v \times q \times s \times n \times I_{100Ah}}{C} \]

\(v = \) dilution factor = 96% air/4% H₂ = 24
\(q = \) quantity of hydrogen generated = 0.42 \(10^{-3}\) m³/Ah
\(s = \) safety factor = 5
\(n = \) number of cells
\(I_{100Ah} = \) current per 100 Ah
\(C = \) nominal capacity of the battery

Sum of factors:

\[v \times q \times s = 0.06 \]

\[Q = 0.06 \times n \times I_{100Ah} \times \frac{C}{100Ah} \]

with \(Q \) in m³/h, \(I_{100Ah} \) in A

\[I_{100Ah} = I_{Foot} \times \frac{1}{s} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lead-acid batteries sealed cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_g)</td>
<td>(0.2)</td>
</tr>
<tr>
<td>(f_s)</td>
<td>(5)</td>
</tr>
<tr>
<td>(U_{float})</td>
<td>(2.27)</td>
</tr>
<tr>
<td>(I_{float})</td>
<td>(1)</td>
</tr>
<tr>
<td>(I_{gas})</td>
<td>(1)</td>
</tr>
<tr>
<td>(U_{boost})</td>
<td>(2.40)</td>
</tr>
<tr>
<td>(I_{boost})</td>
<td>(8)</td>
</tr>
</tbody>
</table>

Tab. 5–2: Recommended current values (Extract from the IEC 62485-2)

If designing the ventilation in battery rooms, depending on the structural conditions, either „natural ventilation“ or „technical ventilation“ can be used.

Observe the following points:

Natural ventilation:
- intake and exhaust openings required
- minimum cross-section (free opening in wall) (A in cm², Q in m³/h) (given that: \(v_{air} = 0.1 \) m/s)
- increased ventilation through chimney effect (air routing)
- exhaust released outside (not into air-conditioning systems or surrounding rooms).

Technical ventilation:
- increased ventilation using fan (generally extractor fans)
- air flow rate according to air volume flow Q
- air drawn in must be clean
- if large amounts of gas are released during charging, continued ventilation is required for 1 h after charging is complete
- for multiple batteries in one room: required air flow = \(\sum Q \)
- avoid a ventilation short circuit by ensuring that there is sufficient distance between the intake and exhaust opening.

In case of a technical (forced) ventilation the charger shall be interlocked with the ventilation system or an alarm shall be actuated to secure the required air flow for the selected charging mode.
5.3 Conducting an open-circuit-voltage measurement

Before installing the batteries, conduct an open-circuit voltage measurement of the individual cells or monobloc batteries to determine their state of charge and to make sure that they are functioning properly. Fully-charged cells with an electrolyte temperature of 20 °C should have an open-circuit voltage as listed in Tab. 5-3. The open-circuit voltages of the individual cells of a battery must not differ more than 0.02 V from one another.

<table>
<thead>
<tr>
<th>Type of cell/monobloc battery</th>
<th>Technical guidelines</th>
<th>Open-circuit voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPzV</td>
<td>DIN 40742</td>
<td>2.080 V ... 2.140 V/c</td>
</tr>
<tr>
<td>power.bloc OPzV</td>
<td>DIN 40744</td>
<td>2.080 V ... 2.140 V/c</td>
</tr>
<tr>
<td>net.power 12 V 100 und 12 V 150</td>
<td>—</td>
<td>2.080 V ... 2.140 V/c</td>
</tr>
<tr>
<td>net.power 12 V 92 und 170 Ah</td>
<td>—</td>
<td>2.100 V ... 2.160 V/c</td>
</tr>
<tr>
<td>grid</td>
<td>power</td>
<td>net.power 12 V 92 und 170 Ah (power.com SB)</td>
</tr>
<tr>
<td>grid</td>
<td>power</td>
<td>net.power 12 V 92 und 170 Ah (power.com XC)</td>
</tr>
<tr>
<td>grid</td>
<td>power</td>
<td>grid</td>
</tr>
<tr>
<td>grid</td>
<td>power</td>
<td>power</td>
</tr>
</tbody>
</table>

Tab. 5-3: Open circuit voltages for different cells/block batteries

The following open-circuit voltage deviations are acceptable for monobloc batteries:
- 4 V monobloc 0.03 V/block
- 6 V monobloc 0.04 V/block
- 12 V monobloc batteries 0.05 V/block

High temperatures decrease the open-circuit voltage while lower temperatures increase it. A deviation of 15 K from the nominal temperature changes the open-circuit voltage by 0.01 V/cell. Please consult your local HOPPECKE representative regarding larger deviations.

5.4 Installation tools and equipment

The batteries are delivered on pallets and the required accessories are located in separate packaging units. Observe all information from the previous sections.

For the installation, you will require your personal safety equipment, protective clothing, safety tools and other equipment as described in Chap. 2.2.
1. If the installation drawing is available, mark the outlines of the racks on the installation surface using chalk.
2. The installation surface must be level and rigid. If backing elements are used, make sure that the thickness does not exceed 6 mm.
3. Carefully set up the racks and arrange them horizontally.
4. The distances of the support profiles must correspond to the dimensions of the cell or monobloc battery.
5. Check rack stability and ensure that all screwed and clamp connectors are firmly secured.
6. If necessary, ground the racks or rack parts.

If using wooden racks, you must fit a flexible connector between each rack joint.

5.6 Cabinet installation
Alternatively, you may choose to install the batteries in HOPPECKE cabinets.
The cabinets can be delivered with batteries already installed or battery installation can take place on-site.
HOPPECKE provides different types of cabinets.
The installation location must fulfill the conditions described in Chap. 5.1.
Comply with the minimum distances listed in Tab. 5–1.

If installing block batteries with L-connectors you should consider that L-connectors have to be mounted before positioning the battery block in the battery cabinet.

Note: The L-connectors are not intended for high current applications (e.g. UPS). Please contact your local HOPPECKE representative in case of questions.

5.7 Handling the batteries
Be very careful when lifting and moving the batteries as a falling battery could cause personal injury or material damage. Always wear protective shoes and safety goggles.
Install the battery in accordance with VDE 0510 Part 2: 2001-12 (in accordance with IEC 62485-2).
For example, you must cover conductive parts using insulating mats.
Make sure that all terminals are covered with insulating caps.

5.8 General information on connecting the batteries
Attention!
If connecting the batteries, always establish the serial connections first followed by the parallel connection. Do not reverse this procedure.
Before connecting, check to make sure that the batteries have the correct polarity.

To establish the serial connection, arrange the batteries so that the positive terminal of one battery is positioned as near as possible to the negative terminal of the next battery.

If sealed stationary batteries are connected in parallel, observe the following:
1. Only battery strings with the same length and voltage may be connected with one another. Cross connecting the individual strings between the cells should be avoided because strings could be very long. Cross connections mask bad cells and blocks and could cause individual battery strings to overload.
2. Only batteries of the same type and same state of charge should be connected (same battery type, plate size and plate design).
3. The environmental conditions should be the same for each string connected in parallel. In particular, avoid temperature discrepancies between the individual strings/batteries.
4. In order to ensure consistent current distribution, make sure that the connectors and end connections are set up so that the individual supply lines connected to the consumer have the same electrical resistance ratio.
5. The commissioning date of the batteries should be the same (batteries of the same age, identical storage time and same state of charge).

If the installation does not comply with all of the above mentioned guidelines, you have to charge each string separately and connect them in parallel afterwards.
In general, connect the batteries using the shortest possible cables. Normallly, cells are connected in series with alternating polarity, resulting in the shortest possible connector length. Batteries of type range OPzV and sun power VR L can also be mounted horizontally in racks or cabinets. These are optional variants for horizontal operation. These variants need to be ordered extra. Fig. 5–12 depicts an example for connection of horizontal oriented battery cells.

The lid of the battery cells must not rest on parts of the battery rack or cabinet.

![Fig. 5–12: Example of a horizontal arrangement of the batteries with OPzV-cells in a battery cabinet](image)

5.9 Putting the cells/blocks into the racks

1. Apply some soft soap to the profiles of the rack so that the batteries can be adjusted sideways more easily once they have been placed onto the rack.

![Fig. 5–13: Greased support profiles](image)

2. Position the batteries one after another into the racks so that they are angled and level with the correct polarity. Remove all transportation and hoisting equipment.

![Cells <= 12 OPzV 1200 Ah](image) ![Cells 12 OPzV 1500 Ah to 24 OPzV 3000 Ah](image)

3. Slide the blocks (or cells) to either side until the distance between the batteries is approx. 10 mm (Fig. 5–14). If connectors are used, these determine the distance between the batteries. When sliding the batteries sideways in the racks, do not push them at the middle; instead, push them at the corners as these are stronger. Push batteries using your hands only; never use a tool.

![Fig. 5–14: 10 mm clearance between the batteries](image)

4. Final step: Count all cells/blocks and check for completeness.

For large batteries, it is required that you begin installation in the center of the rack. When using tier racks, install the batteries on the bottom rack first.

When handling the batteries, observe the instructions in Chap. 5.7. Place the batteries carefully onto the profiles of the rack, otherwise the battery casing could be damaged.

When placing the batteries on the rack, do not allow the batteries to knock up against one another. This could destroy the batteries!

The battery connection terminals + and - must under no circumstance be short-circuited. This also applies also to the + and – pole of the entire battery string. Be very careful when using step racks.

Attention!

Attention!

Danger!

Attention!

Attention!
5.10 Connecting the batteries

The batteries are in their final position and can now be connected.

5.10.1 Connection terminals

The battery terminals of the types sun|power VI x 12 V 58 – 12 V 90 have been greased at the factory using Aeronix® battery terminal grease. Inspect each terminal for visible damage or oxidation. If necessary you should clean the terminal by using a brush (with hard plastic bristles). Re-grease by using the above mentioned terminal grease. Other sealed lead acid battery types don’t need to be greased because the terminals are rubber molded.

5.10.2 Type of connection cable

The battery system that you received is designed to produce a specified amount of power (kW) or current (A) at a particular voltage for a certain period of time (standby time).

You should be familiar with these parameters (U, kW, A). If this is not the case, please contact your local HOPPECKE representative.

The battery system was designed so that the electrical energy is available at the battery terminals. Limit voltage drop between the battery terminals and electrical loads to an absolute minimum. If the voltage drop is too large, the backup time of the battery system may be reduced.

Observe the following information:

1. Keep the cable length between the batteries and the charging rectifier/USV as short as possible.
2. The cable cross-section should be calculated so that voltage drop is negligible even at a high current flow. Use the cross-section of the cable provided to calculate the voltage drop at the nominal current. If in doubt, use cable with a cross-section that is one size larger.

Danger!

The connection cable must be short-circuit proof or double-wall insulated. That means:

– The insulation strength of the cable is higher than the max. system voltage or
– there is a distance of at least 100 mm between wiring and electrically conductive parts or
– connectors must be furnished with additional insulation.
– Avoid mechanical stress on the cell/battery terminals. Protect cables with large cross-sections using cable ties and cable clamps.

The connection cables between the main connection terminals and the charging rectifier or UPS should be flexible conductors.

5.10.3 Clamping batteries using battery connectors

There are screwed row, step and tier connectors (see Fig. 5–15). Row connectors are used to connect the individual cells/monobloc batteries, step connectors are used to connect the individual steps to one another (for use with step racks) and the tier connectors are used to connect the tiers (for use with tier racks).

Fig. 5–15: Using row connectors and step connectors

Attention!

Row, step, and end connectors are designed as screwed connectors. After loosening a connection, the assembly screws must always be replaced.

5.10.4 Installing the screwed connectors

1. The batteries are connected using the insulated row connectors (Fig. 5–16). When establishing the serial connection, the batteries are arranged so that the negative terminal of one battery is connected to the positive terminal of the next battery until the entire system has reached the necessary voltage.

Attention!

Make sure that you do not cause mechanical damage to the terminals.

2. Attach the connectors as shown in Fig. 5–15. First attach the screws by hand only so that you can make final adjustments to the cells and connectors.
3. Tighten the screws using a torque wrench. The recommended torque is 20 Nm ±1 Nm.

It is very important to tighten screws thoroughly as a loose connection can become very hot and result in ignition or explosion.

Screws are approved for single use only!

Attention!

4. If necessary, fit the connectors and end terminals (connection plates) with insulating covers.

Fig. 5–16: Screwed connector installation

5.10.5 Clamping connection plates onto the batteries

There are a total of 11 different types of connection plates (see Fig. 5–15). Connection plates are always used when wires must be connected to cells with multiple battery terminals.

We strongly recommend that you use original HOPPECKE connection plates when connecting wires to cells with multiple battery terminal pairs. Using other solutions may lead to overheating, risk of fire and increased electrical contact resistance!

Attention!
Installation of standard connection plates
Screw the connection brackets onto the end terminals of the battery (see Fig. 5-17).

Attention!
Make sure that you do not cause mechanical damage to the terminals.

2. First attach the screws by hand only so that you can make final adjustments to the cells, connection brackets and connection plates. Fix the connection plate to the connection bracket of the battery with a torque of 20Nm.
3. Afterwards tighten the pole screws using a torque wrench The recommended torque is 20 Nm ±1 Nm.

It is very important to tighten screws thoroughly as a loose connection can become very hot and result in ignition or explosion.

Attention!

5.11 Connect the battery system to the DC power supply

Attention!
Make sure that all installation work has been performed properly before connecting the battery system to the charging rectifier or UPS.

1. Measure the total voltage (target value = sum of open-circuit voltages of the individual cells or monobloc batteries).
2. If necessary: label the cells or monobloc batteries visibly with continuous numbers (from the positive terminal to the negative terminal of the battery). HOPPECKE includes number stickers in your shipment.
3. Attach polarity labels for the battery connections.
4. Complete the identification plate in this documentation (see Chap. 1.2).
5. Attach safety marking signs (these include: „Danger: batteries“, „Smoking prohibited“ and, for battery voltages >60 V, „Dangerous voltage“). Attach further marking signs according to local requirements.
6. Attach the safety notices (see Chap. 0).
7. If necessary: Clean the batteries, the racks and the installation room.

Never clean batteries using feather dusters or dry towels. Danger of electrostatic charging and gas explosion. We recommend cleaning the batteries using damp cotton cloths or paper towels.

Attention!

5.12 Commissioning charge (initial charge)

Normally, by the time of installation, batteries are no longer fully charged. This applies especially to batteries that have been in storage for a long period of time (see Chap. 4). In order to charge the cells to the optimum level as quickly as possible, you must first perform an initial charge. The initial charge (time-restricted) is a „boost charge“.

1. Familiarize yourself with the maximum voltage that the charge rectifier can deliver without damaging the peripherals.
2. Divide this maximum value by the number of battery cells (not batteries) connected in series. This is the maximum cell voltage for the initial charge.
3. Set the voltage so that average cell voltages are at a max. of 2.35V per cell. The initial charge can take up to 48 hours.

It is important for this initial charge to be carried out completely. Avoid interruptions if at all possible.
Log the commissioning in the commissioning report (see Inspection record).

4. During commissioning, measure the cell voltage of the pilot cells and after commissioning, measure the cell voltage and surface temperature of each cell and log this data in the commissioning report along with the time.

The surface temperature must not exceed 55 °C. If necessary, the charge operation must be interrupted, till the temperature drops below 45 °C.

5.12.1 Commissioning charge with constant voltage (IU characteristic curve)

– A charge voltage of max. 2.35 V per cell is required,
– The max. charge current should not be higher than 20 A per 100 Ah C10.
– If the max. temperature of 55 °C is exceeded, the charge operation must be interrupted or you must temporarily switch to float charging to allow the temperature to drop.
– The end of commissioning charge is reached when the cell or bloc voltage no longer rises for a period of 2 hours.

5.12.2 Extended commissioning charge

Extended storage or climatic influences (humidity, temperature fluctuations) reduce the charging state of the cells. This makes an extended commissioning charge necessary.

Conduct the extended commissioning charge according to the following procedure:
1. Charge at 10 – 15 A per 100 Ah C10 until 2.35 V/cell is achieved (approx. 3–5 hours).
2. Charge at 2.35 V/cell until charging current has reached 1 A per 100 Ah.
3. Charge with 1 A per 100 Ah for 4 hours (cell voltage will exceed 2.35 V/cell).
6 Battery operation

DIN VDE 0510 Part 1 and IEC 62485-2 apply for the operation of stationary battery systems.

Each battery is subject to a natural electro-chemical aging process, which causes the reduction of the metallic lead within the battery (corrosion). The progress of the aging process and also the service life of the battery depend significantly on the operating temperature.

The recommended operating temperature for lead-acid batteries is between 10 °C and 30 °C. Technical data is valid for the nominal temperature of 20 °C. The ideal operating temperature range is 20 °C ±5 K. Higher temperatures shorten the service life of the battery. Lower temperatures decrease battery capacity. Exceeding the limit temperature of 55 °C is not permissible. Avoid operating at temperatures in excess of 45 °C for long periods of time.

The natural aging process and thus the service life expectation play an important role especially in high current applications. A high current application is an application with currents and discharge rates ≤ C10. Discharging with high currents results in disproportionately more heat, which may lead to a thermal overload of the corroded metallic conductor. From a certain level of the aging progress the reduced cross sections are not able to conduct the designed maximum permitted current for the defined period. In an extreme case this can result in an unexpected battery failure.

The capacity test helps to check the efficiency and safety of the batteries and can thus avoid an unexpected battery failure. Please note, that during the capacity test the load current must correspond to the maximum permitted current for which the battery is designed. Regular review of the batteries in compliance with specifications defined in Chap. 9 (Testing the battery system) generally eliminates the risk of an unexpected battery failure. We recommend performing the capacity test in accordance with Chap. 9 periodically, but at least once a year. In light of past experience during the first 3 years of the operating life of the batteries the capacity test can be omitted.

6.1 Discharging

Never allow the final discharge voltage of the battery to drop below the voltage corresponding to the discharge current.

Unless the manufacturer has specified otherwise, no more than the nominal capacity is to be discharged. Immediately after discharge (including partial discharge), charge the battery completely.

6.2 Charging - general

Depending on how the batteries are used, charging is to be carried out in the operating modes described in Chap. 6.2.1 to Chap. 6.2.4.

Apply the charging procedure with limit values in accordance with DIN 41773 (IU characteristic curve).

Superimposed alternating currents

Depending on the charger type and charging characteristic curve, alternating currents flow through the battery during charging and are superimposed onto the charging direct current. These superimposed alternating currents and the reaction of the loads lead to additional heating of the battery or batteries and create a cyclical strain on the electrodes. This might result in premature aging of the battery.

After recharging and continuous charging (float charging) in standby parallel operation or floating operation, the effective value of the superimposed alternating current is not permitted to exceed 5 A per 100 Ah nominal capacity. In order to achieve the optimum service life for sealed lead-acid batteries on float charge, a maximum effective value of the alternating current of 1 A per 100 Ah nominal capacity is recommended.

Temperature-related adjustment of the charge voltage

Within the operating temperature range of 15 °C to 25 °C, temperature-related adjustment of the charge voltage is not necessary. If the operating temperature is constantly outside this temperature range, the charge voltage must be adjusted. The temperature correction factor is approx. -0.003 V/cell per K.

The temperature correction factor is approx. -0.003 V/cell per K.

Table 6–1: Corrected charge voltage in relation to charge temperature for battery types with 2.25 V/cell float charge

<table>
<thead>
<tr>
<th>Temperature [°C]</th>
<th>10</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature [°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge voltage [V/cell]</td>
<td>2.34</td>
<td>2.31</td>
<td>2.28</td>
<td>2.25</td>
<td>2.22</td>
<td>2.19</td>
</tr>
</tbody>
</table>

The temperature correction factor is approx. -0.003 V/cell per K.

Fig. 6–1: Temperature related float charge voltage adjustment

Maximum charge currents

Up to 2.4 V/cell the battery is able to absorb the maximum current the battery charger provides. Using the IU-characteristic according to the DIN 41773 a charging current of 5A to 20A per 100Ah rated capacity (C10) is recommended.
6.2.1 Standby parallel operation

The following is characteristic for this operating mode:
- Consumers, direct current source and battery are connected in parallel.
- The charge voltage is the operating voltage of the battery and the system voltage at the same time.
- The direct current source (charging rectifier) is capable of supplying the maximum load current and the battery charge current at any time.
- The battery only supplies current when the direct current source fails.
- To reduce the recharging time, a charging stage can be applied in which the charge voltage is max 2.40 V x number of cells (standby parallel operation with recharging stage).
- Automatic changeover to the charge voltage of (see Tab. 6-2) x number of cells in series occurs after charging.

<table>
<thead>
<tr>
<th>Battery type</th>
<th>Float charge voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPzV</td>
<td>2.25 ± 1% V/cell</td>
</tr>
<tr>
<td>power.bloc OPzV</td>
<td>2.25 ± 1% V/cell</td>
</tr>
<tr>
<td>net.power 12 V 92/170 Ah</td>
<td>2.25 ± 1% V/cell</td>
</tr>
<tr>
<td>power.com XC</td>
<td>2.27 ± 1% V/cell</td>
</tr>
<tr>
<td>grid</td>
<td>power.vn M (power.com SB)</td>
</tr>
<tr>
<td>power.com HC</td>
<td>2.25 ± 1% V/cell</td>
</tr>
<tr>
<td>sun</td>
<td>power.vn M (power.com SB)</td>
</tr>
<tr>
<td>grid</td>
<td>power.vn x/grid</td>
</tr>
</tbody>
</table>

Tab. 6-2: Float charge voltage adjustment in standby parallel operation

6.2.2 Floating operation

The following is characteristic for this operating mode:
- Consumers, direct current source and battery are connected in parallel.
- The charge voltage is the operating voltage of the battery and the system voltage at the same time.
- The direct current source is not able to supply the maximum load current at all times. The load current intermittently exceeds the nominal current of the direct current source. During this period the battery supplies power.
- Therefore, depending on the number of discharges, the charge voltage must be set to approx. (2.27 to 2.30 V) x the number of cells connected in series.

6.2.3 Switch mode operation (charge/discharge operation)

The following is characteristic for this operating mode:
- When charging, the battery is separated from the consumer.
- The max. charge voltage of the battery is 2.4 V/cell.
- The charging process must be monitored.
- At 2.4 V/cell, if the charge current has dropped to 1.5 A per 100 Ah nominal capacity, you must switch to float charging as described in Chap. 6.2.4.
- The battery may be connected to the consumer if required.

6.2.4 Float charging

Float charging is used to keep the battery or batteries in a fully charged state and corresponds to a large extent to the charge type, mentioned in chapter 6.2.1.

Use a charger that complies with the specifications described in DIN 41773 (IU characteristic curve). Set the voltage so that average voltage is 2.25 V ±1 % (2.27 V ±1 % for net.power 12 V 92/170 Ah and power.com XC and 2.28 V ±1 % for grid | power.vn x).

Example: Nominal battery voltage: 60 V, float charge voltage of charging device is 30 x float charge voltage per cell, E.g. 30 x cells OPzV result in 30 x 2.25 V = 67.5 V +/-1% (≈max. 68.18 V/min. 66.83 V).
6.2.5 Equalizing charge (correction charge)

Under normal circumstances equalizing charges are not required. If there are unacceptably large discrepancies between the cell voltages of the individual cells at float charge (see Tab. 6–3), an equalizing charge must be performed. Equalizing charges are necessary after exhaustive discharges, after inadequate charging, if the cells have been held at non-uniform temperatures for long periods of time or if the voltage value of one or more cells has dropped below the critical threshold as specified in Tab. 6–3 during operation.

<table>
<thead>
<tr>
<th>Type</th>
<th>Float charge voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPzV, power.bloc OPzV, net.power 12 V 100 und 12 V 150Ah, grid</td>
<td>2.25 V/cell +/- 1%</td>
</tr>
<tr>
<td>power</td>
<td>grid, power</td>
</tr>
<tr>
<td>net.power 12 V 92 and 170 Ah, power.com Xc</td>
<td>2.27 V/cell +/- 1%</td>
</tr>
<tr>
<td>grid</td>
<td>power</td>
</tr>
</tbody>
</table>

Voltage per unit 2 V 4 V 6 V 12 V

Tolerance float charge voltage for single cells (deviation from average float charge voltage)

<table>
<thead>
<tr>
<th>Voltage per unit</th>
<th>2 V</th>
<th>4 V</th>
<th>6 V</th>
<th>12 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerance float charge voltage</td>
<td>-0.10 V/+0.20 V</td>
<td>-0.14 V/+0.28 V</td>
<td>-0.17 V/+0.35 V</td>
<td>-0.25 V/+0.50 V</td>
</tr>
</tbody>
</table>

Tab. 6-3: Float charge voltage

Example for OPzV cells: Float charge voltage max. = 2.45 V/cell and min. 2.15 V/cell (at average float charge voltage of 2.25 V/cell).

Attention!

As the max. permitted load voltage might be exceeded, it must be clarified in advance whether the loads can be disconnected for the duration of the equalizing charge.

Perform the equalizing charge as follows:

1. Charging with IU characteristic up to max. voltage \(U = 2.4 \) V/cell up to 48 hours. The charge current must not be higher than 20 A per 100 Ah nominal capacity.

2. If the maximum temperature exceeds 45 °C, terminate the charging process or switch to float charge to allow the temperature to drop.

3. The end of the equalizing charge is reached when the cell voltage do not rise for a period of 2 hours.

Required process for charging the batteries by achievement of max. storage duration:

Refer to Chap. 4.

Note that float charge voltages of lead-acid batteries with electrolytes fixed in gel can fluctuate significantly within the first four years after initial commissioning. The voltages range in an area between ca. 2.12 V/cells and 2.5 V/cell +/-1%. The black lines in fig. 6-4 depict this area of float charge voltage for the first five years of battery service life. The exact development of the voltage values can not be determined in advance. Fig. 6-4 depicts rather the trend of this typical behaviour and related reasonable alarm thresholds.

Background:

The scattering of float charge voltages of gel batteries is a normal phenomenon and has no negative impact on the efficiency or capacity of the battery cells. This voltage scattering leads to a balanced internal gas recombination within the battery string with the result of lower voltage differences and improved cell-internal oxygen and hydrogen recombination rates. This process can neither be accelerated through cyclization of the battery, nor by raised charge voltages. The normal equalizing charge voltage leads optimally to a homogeneous gel structure and a high efficiency of the battery over the entire service life.
7.1 Charge and discharge parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>sun</th>
<th>power VR L (OPzV solar.power)</th>
<th>sun</th>
<th>power VR M (solar.bloc)</th>
</tr>
</thead>
</table>

Battery charge
- max. charging current: 6 x I10
- standard charge (regular operating cycles)
 - characteristic
 - max. current (consider the fuses and cable lengths): 6 x I10
 - max. voltage absorption phase: 2.4 - 2.5 V/cell
 - recommended absorption time: 180 min
 - absorption time full charge: 6 h
 - frequency/cycle, based on time period (full charge): 14 days
- float charge
 - voltage: 2.25 V/cell +/- 1%
 - temperature correction: <20 °C: -3 mV/K, >=20 °C: 0 mV/K
- equalization charge (frequency depending on which of the following two criteria occurs first)
 - frequency/cycle, based on capacity throughput: 10 x Cn
 - frequency/cycle, based on time period: 40 days

Tab. 7-1: Charge and discharge parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>sun</th>
<th>power VR L (OPzV solar.power)</th>
<th>sun</th>
<th>power VR M (solar.bloc)</th>
</tr>
</thead>
</table>

Battery discharge
- discharge characteristic
 - refer to the data sheet and project data
- recommended (DOD) cycle operation
 - 50%
- max. depth of discharge (DOD), immediate recharge is necessary
 - 80%
- max. discharge
 - limited by battery fuse and cable
- proposal for characteristic for deep discharge protection \[U=f(I)\]
 - deep discharge protection by switching off relating to a constant voltage value is forbidden!
 - 2.01 V/c at \(l<=0.16 \times I_{10}\)
 - 1.81 V/c at \(l>=4 \times I_{10}\)
 - linear interpolation at \(0.16 \times I_{10} < l < 4 \times I_{10}\)
 - 2.01 V/c at \(l<=0.16 \times I_{10}\)
 - 1.90 V/c at \(l>=4 \times I_{10}\)
 - linear interpolation at \(0.16 \times I_{10} < l < 4 \times I_{10}\)

7.2 Alternating currents

Depending on the charging equipment, its specification and its characteristics, superimposed alternating currents may contribute to battery charging current. Alternating currents and the corresponding reaction by the connected electrical loads may lead to an additional battery temperature increase, and – consequently – to a shortened battery service life as a result of stressed electrodes (micro cycling). The alternating current must not exceed 1 A (RMS)/100 Ah nominal capacity.
7.3 Temperature influence on battery performance and service life

7.3.1 Temperature influence on battery capacity

Battery capacity depends significantly on ambient temperature. Lead acid batteries loose capacity with decreasing temperature and vice versa, as shown in fig. 7-6. This should be considered when sizing the battery.

Temperature range for sun | power vr l (OPzV solar.power/OPzV bloc solar.power) batteries:

Possible temperature range: -20 °C to 45 °C
Recommend temperature range: 15 °C to 35 °C

Fig. 7–6: sun | power vr l (OPzV solar.power/OPzV bloc solar.power): Dependency of battery capacity on temperature

7.3.2 Temperature influence on battery service life

As corrosion processes in lead acid batteries are significantly depending on battery temperature, the battery service life is directly related to the ambient temperature.

As rule of thumb it can be stated that the speed of corrosion doubles per 10 K increase (rule by Arrhenius). Thus battery service life will be halved in case the temperature rises by 10 K.

The following graph (refer to fig. 7–7) shows this relationship. The diagram depicts operation in float charge mode. Additionally, the endurance in cycles has to be taken into account.

Fig. 7–7: Service life of sun | power vr l (OPzV solar.power) cell as a function of ambient temperature (standby application in float charge operation with 2.25 V/cell)

7.4 Influence of cycling on battery behavior

7.4.1 Endurance in cycles depending on depth of discharge

The endurance in cycles is defined as number of discharging and charging cycles until the actual remaining battery capacity drops below 80% of the nominal capacity (C_10). The endurance in cycles of a lead acid battery is directly depending on the regular depth of discharge (DoD) during these cycles. Depending on different types of batteries and the design of the plates and electrodes, the endurance in cycles may vary significantly.

The following chart (refer to fig. 7–8) shows the cycling behavior of a HOPPECKE sun | power vr l (OPzV solar.power/OPzV bloc solar.power) under ideal operating conditions. The cycle life refers to one discharge per day. Endurance in cycles cannot exceed stated service life under float charge conditions.

Fig. 7–8: Endurance in cycles of sun | power vr l (OPzV solar.power) as a function of DoD (at 20 °C)

7.4.2 Endurance in cycles depending on ambient temperature

Since design life mainly depends on temperature, the cycle lifetime is affected by temperature as well. Fig. 7-9 depicts this relation for a regular battery depth of discharge of 80 %.

The following graph (refer to fig. 7–7) shows this relationship. The diagram depicts operation in float charge mode. Additionally, the endurance in cycles has to be taken into account.

Fig. 7–9: Service life of sun | power vr l (OPzV solar.power) cell as a function of ambient temperature (standby application in float charge operation with 2.25 V/cell)

Fig. 7–9: Endurance in cycles of sun | power vr l (OPzV solar.power) as a function of ambient temperature
7.5 Remarks to warranty management

Above mentioned information about battery performance and service life, particularly concerning the charging procedure and the influence of temperature and cycling, affect terms of warranty as well. In case of a warranty claim the customer/battery operator needs to prove the compliance of above mentioned parameters with the allowed/recommended limits. Corresponding measurement logs have to be sent to the battery manufacturer.

The service life of the battery is valid for operation under optimal conditions only.

For a better understanding of the life time terms, please pay attention to the information leaflet No. 23e (Edition August 2013) of the Fachverband Batterien of the ZVEI – Zentralverband Elektrotechnik und Elektroindustrie (https://www.zvei.org/fileadmin/user_upload/Verband/Fachverbaende/Batterien/Merkblaetter/Industriebatterien/23e_Definition_of_different_life_time_terms_for_batteries_2013-08.pdf). With regard to the assertion of warranty claims only the respective contractual provisions are decisive.

For special demanding operational conditions as well as for solar and off-grid applications the expected battery service lifetime is heavily influenced by above mentioned operational conditions. In order to decide whether a battery failure was caused by manufacturing defects or operational conditions, above mentioned parameters need to be monitored and registered on a regular basis. These data have to be forwarded to the manufacturer for further analysis.

HOPPECKE recommends the usage of a battery monitoring system for monitoring and logging of critical data. Please contact your local HOPPECKE representative for information on HOPPECKE battery monitoring equipment and accessories.

7.4.3 Electrolyte freezing point depending on depth of discharge (DoD)

The freezing point of the electrolyte (sulfuric acid) rises with increasing depth of discharge. In case the battery is exposed to cold ambient temperatures (< 0 °C) the maximum depth of discharge has to be decreased in order to avoid electrolyte freezing and potential damages of the cell jar. Fig. 7-11 shows an example for this relation. Example: If depth of discharge is below 60 % the operating temperature must not be below -23.4 °C.

8 Battery maintenance

Work on batteries, especially installation and maintenance should be performed by HOPPECKE specialists (or by qualified personnel trained by HOPPECKE) only; personnel must be familiar with battery handling and the required precautionary measures. Unauthorized persons must keep away from the batteries.

To ensure the reliability and longevity of your battery system, regular maintenance is required. Document the type and scope of maintenance work performed as thoroughly as possible. These records can be very helpful if troubleshooting is required and are a prerequisite for making warranty claims.

8.1 Work to be performed every six months

Take the following measurements and record the measurement values:

1. Voltage of the complete battery system.
2. Individual voltage of selected cells or monobloc batteries.
3. Surface temperature of selected cells or monobloc batteries.
4. Temperature in battery room.

If the cell voltage deviates from the average float charge voltage by more than +0.2 V/cell or -0.1 V/cell and/or if the surface temperature of various cells or monobloc batteries differs by more than 5 K, contact customer service.

Also note specifics of lead-acid batteries with electrolytes, fixed in gel. (see chapter 6.2.5)
9 Testing the battery system

9.1 Performing the capacity test (short form)

In addition, note special test instructions, e.g. in accordance with DIN VDE 0100–710 and DIN VDE 0100–718.

The following is the short form of the procedure for testing the actual capacity of your battery system. Also observe all instructions in Chap. 9.2.

We recommend performing an equalizing charge on the battery system (as described in Chap. 6.2.5) before performing this test.

Perform the equalizing charge no more than 7 days in advance and no less than 3 days in advance!

1. Make sure that all connections are clean, secure and noncorroded.

2. During normal battery operation, measure and record the following parameters:
 - Individual voltage of all cells or monobloc batteries.
 - Surface temperature of at least one out of every ten cells or monobloc batteries.
 - Voltage of the complete battery system.

3. Interrupt the connection between the battery system that you wish to test and the charger and all consumers.

4. Prepare an adjustable load that you can connect to the battery system.

 The load current must correspond to the maximum permitted current for which the battery is designed.

5. Prepare a shunt that you can connect in series with the load.

6. Prepare the voltmeter so that you can test the total voltage of the battery.

7. Connect the load, the shunt and the voltmeter. Simultaneously start a time measurement.

8. Keep the load current constant and measure the voltage of the battery system in regular time intervals.

9. Check the row connectors (block connectors), step connectors and tier connectors for excessive heating.

10. Calculate the capacity of the battery system using the following formula:

 \[
 \text{Capacity (\% at } 20^\circ\text{C}) = \left(\frac{T_a}{T_s} \right) \times 100
 \]

 \[
 T_a = \text{actual discharge time until the permitted minimum voltage is reached.}
 \]

 \[
 T_s = \text{theoretical discharge time until the permitted minimum voltage is reached.}
 \]

11. Reconnect the battery system as originally connected and perform a boost charge (see Chap. 5.13).

9.2 Performing the capacity test (extended version)

Preparation

The best and quickest method for preparing batteries for testing is the IU charge method, also used for equalizing charges. Because it is possible to exceed the permitted load voltages, appropriate measures must be taken, e.g. disconnection of the consumers.

The IU characteristic curve with increased voltage (2.33 - 2.40 V) x number of cells is the most common charging characteristic used for commissioning the batteries.

The charge is performed with a constant voltage of max. 2,40 V/cell for up to 48 hours. The charge current should not be higher than 20 A per 100 Ah nominal capacity. If the electrolyte temperature of the cells/blocs exceeds the maximum of 45 °C, terminate the charge or switch to float charge to allow the temperature to drop.
Note that an increased proportion of hydrogen is produced and that the battery room must be provided with sufficient ventilation.

While charging up to 2.40 V, the effective value of the superimposed alternating current is permitted to reach up to 10 A per 100 Ah nominal capacity (for a short time up to 20 A/100 Ah nominal capacity).

After recharging and continuous charging (float charging) in standby parallel operation or floating operation, the effective value of the superimposed alternating current is not permitted to exceed 5 A per 100 Ah nominal capacity.

Depending on storage time and storage conditions, the battery may require an additional charge for commissioning.

The battery is completely charged when the voltage and the charge current no longer change within a period of 2 hours.

9.3 Capacity test of the battery

Necessary accessories:

- Suitable electronic load or electrical resistance (with adjustable resistance value to adjust the discharge current or discharge load).
- Suitable current probe with sufficient precision for measuring the DC current or shunt for measuring the discharge current.
- Voltage measuring device for measuring the electrical voltage.
- Thermometer for measuring the battery temperature (surface temperature).
- Clock for measuring the discharge time.
- Project planning data table for selecting the correct discharge current or the correct discharge power.

Carry out the battery discharge in accordance with the regulations on performing capacity tests EN 60896–21. The discharge current and the discharge power are selected according to the project planning data tables up to a given final discharge voltage and the given potential of the existing loads.

Minimum precision requirements for the measuring devices (precision class):

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>0.5</td>
</tr>
<tr>
<td>Current</td>
<td>0.5</td>
</tr>
<tr>
<td>Temperature</td>
<td>±1 °C</td>
</tr>
<tr>
<td>Time</td>
<td>±1%</td>
</tr>
</tbody>
</table>

Tab 9-1: Precision requirements for the measuring devices

During the capacity test, record the discharge current or discharge power, temperature, battery and cell-/block-voltage and discharge time at intervals of 10 % of the discharge time. At least, record these values at 10 %, 50 %, 80 % and 95 % of the discharge time.

Terminate the discharge when the battery voltage has reached the value \(n \times U_f\) where \(n\) is the number of cells and \(U_f\) is the selected final discharge voltage per cell.

Also terminate the discharge when a cell has reached a voltage of \(U = U_f - 200 \text{ mV}\) or a monobloc battery with \(n\) cells has reached a voltage of \(U = U_f - \sqrt{n} \times 200 \text{ mV}\).

Example:

13 cells 6 OPzV 300
5 h - capacity test
End voltage of the battery = 23.40 V (for 13 cells)
Average voltage per cell = 1.80 V
Minimum end voltage of individual cells = 1.60 V
10 Troubleshooting

If malfunctions occur in the battery or charger, contact customer service immediately. Measured data as described in Chap. 8.1 simplifies fault detection and elimination. A service contract with us facilitates the timely detection of faults.

11 Required ventilation for hydrogen generated by batteries

Compliance with VDE 0510 Part 2 or IEC 62485-2 is required to ensure safe ventilation and prevent dangerous mixtures of hydrogen and oxygen gases (hydrogen approx. 4%).

Two values form the basis of the equation: the maximum permissible hydrogen concentration in the air is 4% and the safety factor is 5. The equation can be derived accordingly:

\[
q = \frac{100\% - 4\%}{4\%} \times \frac{1}{s} \times \frac{3\text{ m}^3}{\text{Ah}}
\]

(Attenuation factor at maximum permissible hydrogen concentration)

\[
q = 0.42 \times 10^{-3} \text{ m}^3/\text{Ah}
\]

(Quantity of accumulated hydrogen per actual Ah capacity)

\[
s = 5
\]

(safety factor)

\[
\nu \times q \times s = 0.65 \text{ m}^3/\text{Ah}
\]

This results in the total equation for the necessary ventilation in [in m³/h]:

\[
Q_{\text{air}} = 0.05 \times n \times \nu \times C_n \times 10^{-3}
\]

\[
l_{\text{gas}} = l_{\text{max}} \times f_g \times f_s \text{ resp. } l_{\text{gas}} = l_{\text{max}} \times f_g \times f_s
\]

\[
Q_{\text{air}} = \text{Necessary ventilation/air flow rate [in m³/h]}
\]

\[
n = \text{Number of cells}
\]

\[
l_{\text{max}} = \text{Proportion of charge current in mA/Ah used for water dissociation on float charge per 1 Ah nominal capacity of the battery. } = 1 \text{ mA/Ah}
\]

\[
l_{\text{max}} = \text{Proportion of charge current in mA/Ah used for water dissociation on boost charge per 1 Ah nominal capacity of the battery. } = 8 \text{ mA/Ah}
\]

\[
C_{\text{n}} = \text{Nominal capacity of the battery (C_{10} capacity)}
\]

\[
f_g = \text{Gas emissions factor. Proportion of the charge current responsible for hydrogen accumulation. } = 0.2
\]

\[
f_s = \text{Safety factor which includes the potential for faults resulting from a damaged cell (possible short circuit) and battery aging. } = 5
\]

Example 1:

A battery with 2 x 60 V (60 V nominal voltage), 4 OPzV 200 (200 Ah) is equivalent to 2 x 30 cells. The battery is on float charge at 2.25 V per cell.

\[
C_{\text{n}} = \text{Nominal capacity of the battery } = 200 \text{ Ah}
\]

\[
n = \text{Number of cells } = 2 \times 30 \text{ cells}
\]

\[
f_g = \text{Gas emissions factor } = 0.2
\]

\[
f_s = \text{Safety factor } = 5
\]

\[
l_{\text{max}} = 1 \text{ mA/Ah}
\]
Installation, commissioning and operating instructions for valve-regulated stationary lead-acid batteries

Result: For a 60 V battery composed of 2 x 30 cells 4 OPzV 200 operating on float charge, an airflow of 0.6 m³/h is required for proper ventilation.

What is the appropriate diameter for intake and exhaust openings with natural ventilation?
The necessary cross-section for ventilation openings can be calculated using the following formula:

\[
A = \frac{Q_{air}}{28}\]

Where:
- \(A\) = Necessary cross-section for ventilation openings [in cm²]
- \(Q_{air}\) = Necessary ventilation [in m³/h]

Result: Ventilation openings (intake and exhaust) with a cross-section of 16.8 cm² ensure ventilation with an airflow of 0.6 m³/h.

What factors must be considered when installing a natural ventilation system?
If possible, the ventilation openings should be positioned on opposite walls. If they must both be on the same wall, make sure to maintain a distance of at least 2 m between the openings.

12 Disassembly

Observe all safety precautions for disassembly of the battery system (refer to chapter 0, 1 and 2). This includes among others personal safety equipment, protective clothing and usage of insulated tools.

Proceed in the following way:
- Before starting ensure that all electrical loads are switched off (separators, fuses, switches). This must be carried out by qualified personnel. Ensure that the battery is disconnected from all charging devices and electrical loads.
- For battery systems with nominal voltage > 60 V: Remove group-/step connectors first in order to divide the battery system voltage in smaller partial voltages. Removed connector and post terminal bolts need to be removed from the battery immediately. You must not use automatic screwdrivers for loosening the post terminal bolts.
- Remove the connectors between cell/blocks. Removed connector and post terminal bolts need to be removed from the battery immediately. You must not use automatic screwdrivers for loosening the post terminal bolts.
- Battery cells/blocks need to be packed according to ADR 598B. Visible damaged cells/blocks must be packed (e.g. Palox) and transported separately. Refer also to chapter 1.4.
Batteries are marked with the following hazard symbols:

- No smoking, no open flames, no sparks.
- Wear safety goggles.
- Sulphuric acid.
- Observe operating instructions.
- Explosive gas mixture.

Cleaning / take-up procedures

Use a bonding agent, such as sand, to absorb spill acid.

Use lime / sodium carbonate for neutralisation; dispose with due regard to the official local regulations, do not permit penetration into the sewage system, the earth or water bodies.

First-aid measures

General Information:

Sulphuric acid acts corrosive and damages tissue
after contact with skin rinse with water, remove and wash wetted clothing
after inhalation of acid mist*) inhale fresh air
after contact with the eyes*) rinse under running water for several minutes
after swallowing*) drink a lot of water immediately, and swallow activated carbon
Lead-containing battery paste classified as toxic for reproduction
after contact with skin clean with water and soap

*) seek the advice of a doctor.

Suitable extinguishing agents

When electrical devices are set in fire in general water is the suitable extinguishing agent. For incipient fires CO₂ is the most effective agent. Fire brigades are trained to keep a distance of 1 m when extinguishing an electrical fire (up to 1 kV) with spray jet and a distance of 5 m with full jet. For electrical fires in electrical installations with voltages > 1 kV other distances are applicable depending on the respective voltage. For fires in photovoltaic installations other rules apply.

Unsuitable extinguishing agents

Powder fire extinguishers are not suitable, amongst others because of only minor efficiency, possible risks or collateral damages.

Special protective equipment

For larger stationary battery installations or larger stored quantities: protective goggles, respiratory and acid protective equipment, acid-proof clothing.
8. Exposure limits and personal protective equipment

8.1 No exposure caused by lead and lead-containing battery paste.

8.2 Possible exposure caused by sulphuric acid and acid mist during filling and charging.

9. Physical and chemical properties

Boiling point: ca. 108 – 114 °C
Density (20 °C): 1,2 – 1,3 g/cm³
Solidification point: 338 °C.
Vapour pressure (20 °C): 11,35 g/cm³

9.1 Sulphuric acid

Water-polluting liquid within the meaning of the German Water Resources Act (WHG) Water pollution class: 1 (mildly water polluting).

As described in section 6 use a bonding agent, such as sand, to absorb spilled acid or neutralise using lime / sodium carbonate. Dispose of under the locally applicable provisions. Dispose with due regard to official local regulations.

Do not allow progression into the sewage system, soil or bodies of water.

10. Stability and reactivity of sulphuric acid (30 to 38.5%)

- Corrosive, inflammable liquid.
- Thermal decomposition at 338 °C.
- Destroys organic materials such as cardboard, wood, textiles.
- Reacts with metals producing hydrogen.
- Vigorous reactions with lyes and alkalies.

11. Data on toxicity of the constituents

Sulphuric acid acts intensely corrosive on skin and mucous membranes. The inhalations of mists may cause damage to the respiratory tract.

Lead and lead-containing battery paste may cause damage to the blood, nerves, and kidneys when taken in. Lead-containing battery paste is classified as toxic for reproduction.

12. Data on the ecology of the constituents

Lead and lead-containing battery paste are allowed to be mixed with other batteries in order not to comply the processing.

By no means may the electrolyte, the diluted sulphuric acid, be emptied in an incepted manner. This process is to be carried out by the processing companies.

13. Recycling information

The points of sale, the manufacturers and importers of batteries, respectively the metal dealers take back dead batteries, and render them to the secondary lead smelters for processing.

Lead and acid-containing battery paste is classified as toxic for reproduction.

Preliminary remark: Relevant only if release is caused by destruction of the battery

Sulphuric acid

Water-polluting liquid within the meaning of the German Water Resources Act (WHG) Water pollution class: 1 (mildly water polluting).

As described in section 6 use a bonding agent, such as sand, to absorb spilled acid or neutralise using lime / sodium carbonate. Dispose of under the locally applicable provisions. Dispose with due regard to official local regulations.

Do not allow progression into the sewage system, soil or bodies of water.

Special Provision 238 para. a) + b): no transport as dangerous goods (non-spillable batteries are not subject to other requirements of IMDG Code if they meet the requirements according to Special Provision 238. An appropriate manufacturer’s confirmation is necessary. Batteries which do not meet the requirements according to Special Provision 238 have to be packed as spillable batteries which do not meet the requirements according to Special Provision 238 and carried as dangerous goods according to UN 2794.)

Air transportation according to IATA-DGR

- Hazard class: 8
- UN-no.: 2800
- Proper shipping name: BATTERIES, WET, NON-SPILLABLE
- Packing group: none
- Packing Instruction: 872
- Hazard label: 8
- Special Provision 238 has to be packed as listed in 14.1 Land transportation ADR/RID accordingly to Packing Instruction P 003 and carried as dangerous goods according to UN 2794.)

Sea transportation according to IMDG Code

- Hazard class: 8
- UN-no.: 2800
- Proper shipping name: BATTERIES, WET, NON-SPILLABLE
- Packing group: none
- Packing Instructions: P 003 and P 016
- Hazard label: 8
- Special Provision 238
- Proper shipping name: BATTERIES, WET, FILLED WITH ACID
- Packing group: none
- Packing Instruction: P 801
- Hazard label: 8
- Special Provision 238 no. 1 + 2; no transport as dangerous goods (non-spillable batteries are not subject to other requirements of IMDG Code if they meet the requirements according to Special Provision 238. An appropriate manufacturer’s confirmation is necessary. Batteries which do not meet the requirements according to Special Provision 238 have to be packed as listed in 14.1 Sea transportation IMDG Code according to Packaging Instruction P 801 and carried as dangerous goods according to UN 2794.)

Air transportation according to IATA DGR

- Hazard class: 8
- UN-no.: 2800
- Proper shipping name: BATTERIES, WET, NON-SPILLABLE
- Packing group: none
- Packing Instruction: 872
- Hazard label: 8
- Special Provision 238 has to be packed as listed in 14.1 Sea transportation IMDG Code according to Packaging Instruction P 801 and carried as dangerous goods according to UN 2794.)

Sea transportation according to IMDG Code

- Hazard class: 8
- UN-no.: 2794
- Proper shipping name: BATTERIES, WET, FILLED WITH ACID
- Packing group: none
- Packing Instruction: P 801
- Hazard label: 8
- Special Provision 238
- Proper shipping name: BATTERIES, WET, NON-SPILLABLE
- Packing group: none
- Packing Instructions: P 003 and P 016
- Hazard label: 8
- Special Provision 238 no. 1 + 2; no transport as dangerous goods (non-spillable batteries are not subject to other requirements of IMDG Code if they meet the requirements according to Special Provision 238. An appropriate manufacturer’s confirmation is necessary. Batteries which do not meet the requirements according to Special Provision 238 have to be packed as listed in 14.1 Sea transportation IMDG Code according to Packaging Instruction P 801 and carried as dangerous goods according to UN 2794.)
Information Leaflet

Safety data sheet on accumulator acid (diluted sulphuric acid) (in compliance with EC Directive 91/155/EU)

1. Substance / formulation and company name

Data on the product:

- Name: diluted sulphuric acid (1,22 ... 1,29 kg/l)
- Trade name: accumulator acid

Data on the manufacturer:

- Telephone:
- Facsimile:

2. Composition / data on the constituents

Chemical characteristics:

- Sulphuric acid: 30 ... 38,5%ig, density 1,22 ... 1,29 kg/l
- CAS-Number: 7664-93-9
- EU-Number: 016-020-00-8
- UN-Number: 2796
- EINECS-Number: 231-639-5

3. Potential hazards

- Diluted sulphuric acid may cause severe acid burns

General instructions:

- after contact to skin
 - Remove soiled, wetted clothing immediately.
 - Rinse with a lot of water immediately after contact to skin.
 - Inhale fresh air.
 - Rinse under running water for several minutes.
 - Drink a lot of water immediately, and swallow activated carbon.

4. First-aid measures

- after contact to skin
 - Rinse with a lot of water immediately after inhalation of acid mist.
 - after contact with the eyes
 - Seek the advice of a doctor.

In accordance with the German law governing the sale, return and environmentally sound disposal of batteries and secondary cells (Batteries Act – Batteriegesetz, BattG) from 25 June 2009 (national transposition of directive 2006/66/EC (battery directive)) lead-acid batteries have to be marked with a crossed-out wheelie bin with the chemical symbol for lead Pb shown below. In addition, the ISO-return / recycling symbol is rendered.

The manufacturer, respectively the importer of the batteries shall be responsible for the attachment of the symbols. In addition, a consumer / user information on the significance of the symbols has to be attached, which is required by the German Battery Ordinance quoted above as well as by the voluntary agreement of the battery manufacturers concluded with the German Federal Minister of the Environment in September 1988.

This leaflet was prepared within the Committee on Environmental Affairs of the Division Batteries of the German Electrical and Electronic Manufacturers’ Association, ZVEI. (Revised Edition November 2003).

© ZVEI 2012

In spite of all due care, however, we cannot accept any liability that the information is complete or correct or up to date.
5 Fire-fighting measures

Suitable extinguishing agents in case of surrounding fires: CO₂ and solid existing extinguishing agent.

6 Measures to be taken in case of unintentional release

Cleaning / take-up procedures: Use a bonding agent, such as sand, to absorb split acid; use lime / sodium carbonate for neutralisation, dispose with due regard to the official local regulations.

7 Handling and storage

Store frost-free under roof. Seek agreement with local water authorities in case of larger quantities. Observe VAWS.

8 Exposure limits and personal protective equipment

Possible exposure caused by sulphuric acid and acid mist during filling and charging:

<table>
<thead>
<tr>
<th>Threshold value on workplace:</th>
<th>0.1 mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal protective equipment:</td>
<td>Rubber, PVC gloves, acid-proof goggles, acid-proof clothing, safety boots</td>
</tr>
</tbody>
</table>

1. 0.5 mg/m³ at the lead battery production

9 Physical and chemical properties

Appearance

<table>
<thead>
<tr>
<th>form:</th>
<th>liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>odour:</td>
<td>odourless</td>
</tr>
</tbody>
</table>

Safety-related data

solidification point:	0.8 . . . 60 °C
boiling point:	approx. 108 . . . 114 °C
Solubility in water:	complete
flash point:	N.A.
ignition temperature:	N.A.
lower explosive limit:	(1.2 – 1.3) g/m³
density (20 °C):	114.6 mbar
vapour pressure (20 °C):	N.A.
bulk density:	1 (at 20 °C)
dynamic viscosity:	approx. 2.8 mPa . s (at 20 °C)

10 Stability and reactivity of the sulphuric acid (30 . . . 38.5 %)

- Corrosive, inflammable liquid.
- Thermal decomposition at 338 °C.
- Destroys organic materials, such as cardboard, wood, textiles.
- Reacts with metals producing hydrogen.
- Vigorous reactions with lyes and alkalis.

11 Data on the toxicology of the constituents

- Acts intensely caustic on skin and mucous membranes, in low concentration already. The inhalation of mists may cause damage to the respiratory tract.

12 Data on the ecology of the constituents

- Water-polluting liquid within the meaning of the German Water Resources Act
- Water pollution class: 1 (mildly water polluting).
- In order to avoid damage to the sewage system, the acid has to be neutralised by means of lime or sodium carbonate before disposal.
- Ecological damage is possible by change of pH.

13 Instructions for processing / disposal

- The batteries have to be processed / disposed of with regard to the official local regulations.

14 Transport regulations

<table>
<thead>
<tr>
<th>Land transport:</th>
<th>ADR</th>
<th>chapter 3.2, UN 2796</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of the goods:</td>
<td>Battery, fluid, Acid</td>
<td></td>
</tr>
<tr>
<td>Danger number:</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>UN number:</td>
<td>2796</td>
<td></td>
</tr>
<tr>
<td>Sea transport:</td>
<td>IMDG-Code</td>
<td>chapter 3.2, UN 2796</td>
</tr>
<tr>
<td>Air transport:</td>
<td>IATA-DGR</td>
<td>chapter 3.2, sulphuric acid</td>
</tr>
</tbody>
</table>

Other data:

| Dispatch per mail service | impermissible |

15 Regulations

Marking according to

German Regulations on Hazardous Materials

<table>
<thead>
<tr>
<th>Identification requirement</th>
<th>C, corrosive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danger symbol</td>
<td>R-phrases 35</td>
</tr>
<tr>
<td>S-phrases 1 / 2</td>
<td>Keep locked up and out of reach of children</td>
</tr>
<tr>
<td>26</td>
<td>In case of contact with eyes rinse immediately with plenty of water and seek medical advice</td>
</tr>
<tr>
<td>30</td>
<td>Never add water to this product ¹</td>
</tr>
<tr>
<td>45</td>
<td>In case of accident or if you feel unwell seek medical advice immediately (show the label where possible).</td>
</tr>
</tbody>
</table>

¹ applies for concentrated acid only, and not for refilling the battery with water

National regulations:

| Water pollution class: | 1 (list material) |
| Other regulations: | To be observed in case of storage: German Water Resources Act |

16 Miscellaneous data

The data rendered above are based on today’s knowledge, and do not constitute an assurance of properties. Existing laws and regulations have to be observed by the recipient of the product in own responsibility.